

Technical Handbook

Transponder Reader
Family T4/T5

Document Release 2.03

06.04.2009

Elatec GmbH

Page 2 of 36

Content

1. Introduction___4

2. Serial Communication __5

2.1 Hardware Level ___ 5

2.2 Packet Level __ 5

3. Basic Reader Behaviour ___6

3.1 Searching Transponders__ 6

3.2 Automatic RF Field Shutdown___ 6

4. Windows API__7

5. Compatibility and Differences __8

6. Functions___9

6.1 Retrieving Port Numbers ___ 9

6.2 Initialize/Deinitialize Communication__ 11

6.3 Functions for Selecting a Transponder ___ 13
6.3.1 Blocking Functions for Selecting a Transponder _______________________________________ 14
6.3.2 None-Blocking Functions for Selecting a Transponder __________________________________ 17
6.3.3 None-Blocking Functions for Auto-Answer Mode ______________________________________ 18

6.4 Functions for Reading and Writing of Transponders _____________________________ 19

6.5 Functions for Configuring Transponders_______________________________________ 20

6.6 Configuring Support for Transponders __ 21
6.6.1 Options for Transponder Type IDRW-B ___ 21

6.6.1.1 TagType = 0x01 (=T4_TYPE_IDRW_B) __ 21
6.6.2 Options for Transponder Type IDRW-E ___ 22

6.6.2.1 TagType = 0x04 (=T4_TYPE_IDRW_E) __ 22
6.6.2.2 TagType = 0x84 (=T4_TYPE_IDRW_E | 0x80) _____________________________________ 23

6.6.3 Configuring Reader Internal Password ___ 23

6.7 Cryptographic Functions __ 24
6.7.1 Setting up Crypto Keys___ 24
6.7.2 Configuring Crypto Functions for Hitag 1 and Hitag S __________________________________ 26
6.7.3 Configuring Crypto Functions for Hitag 2 __ 26

6.8 Configuring Auto-Answer Mode __ 27

6.9 Configuring Digital I/Os ___ 28

6.10 I/O Requests ___ 29

6.11 Reading Version Information___ 32

6.12 Miscellaneous __ 33

7. Definitions ___34

7.1 General ___ 34
7.1.1 Version of the Library__ 34
7.1.2 Type of Transponders __ 34
7.1.3 Codes to Support the Different Transponder Types _____________________________________ 34
7.1.4 Port Types___ 34

7.2 Error Codes ___ 35
7.2.1 General ___ 35

Elatec GmbH

Page 3 of 36

7.2.2 Error Codes from Transponder Operations__ 35
7.2.3 Error Codes from Reader Operations __ 35
7.2.4 Error Codes from the Serial Connection__ 35
7.2.5 Error Codes of the Library __ 36

Elatec GmbH

Page 4 of 36

1. Introduction
This document is the reference guide for the transponder reader families T4 and T5. It contains an
functional overview of the readers, the protocol description of the serial communication and the
appropriate DLL functions.

Elatec GmbH

Page 5 of 36

2. Serial Communication

2.1 Hardware Level

The serial communication is bidirectional with no handshaking at 9600 baud, 8 data bits, even parity bit
and 1 stop bit (9600, 8E1). The host sends request packets to the reader, and the reader answers to
each request with a reply packet. The reader sends a reply packet only after receiving a request
packet. This rule is violated in autoanswer mode when the reader may send unrequested replies.

2.2 Packet Level

The request packets (sent by the host) have the following format:

1 lenght (=n) total byte count of the request packet

2 address reader address (255 matches any reader)

3 command the request type identifier

4..n-1 data supplementary request specific data

n checksum XOR sum of all bytes from 1 to n-1

The reply packets (sent by the reader after a request is received) have the following format:

1 lenght (=n) total byte count of the reply packet

2 address actual reader address

3 command the request type identifier (see note below)

4 status command completition status byte

5..n-1 data supplemetary data replied by the reader

n checksum XOR sum of all bytes from 1 to n-1

Note: The request type identifier in the reply packet has the same value as the request type identifier in
the request packet. The only exception (due to historical reasons) is the 0x1C request. The
corresponding reply packet contains then the 0x11 request type identifier. This behaviour has been
changed more up-to-date versions of the firmware of the reader.

Unrequested reply packets (in autoanswer mode) have always a 0x11 request type identifier.

Example:

Reading the version information is built up as follows:

Request from the host:

0x04 0xFF 0x65 0x9E

Reply from the reader:

0x0A 0x00 0x65 0x00 0x02 0x3E 0x00 0x81 0x3F 0xED

Elatec GmbH

Page 6 of 36

3. Basic Reader Behaviour

3.1 Searching Transponders

The basic and most frequently used request is the read serial number request. The reader reply
contains the tag type and serial number of a tag, if any, or the No transponder status code. The tag is
hereby selected. Only a selected tag can be read from or written to. The tag remains selected as long
as it stays in the reading range of the reader, no read/write errors have occured, and the RF field was
not interrupted as a result of a specific request or an automatic shutdown.

If an IDRW-B or IDRW-C tag is removed from the RF field, then the tag loses its selection state without
the reader noticing it, and the next read/write request will yield an error.

Tag selection is only meaningful for read/write tags.

3.2 Automatic RF Field Shutdown

For power saving purposes, the RF field is activated only during command execution. If the RF field is

off before the execution of a received command or an internally generated read serial number

command (in autoanswer mode), the RF field is first activated, and the actual command execution is

started after about 200 ms. If the RF field is already on, command execution is commenced

immediately.

Two seconds after command completition, the RF field is deactivated. Of course, if another command

is executed in the mean time, RF deactivation is delayed for another two seconds. After RF

deactivation, any selected tag (with the read serial number command) is deselected.

This behaviour must be considered when executing read and write commands. They imply a previous

successfully completed read serial number command. If the subsequent read/write commands follow

too late, or the delay between the read/write commands themselves is too long, then a Select error is

issued.

Elatec GmbH

Page 7 of 36

4. Windows API
The provided DLLs do contain functions for simplifying the development of application programs under
Windows.

Platform Import Library DLL Header File

Windows
95, 98, ME, NT, 2000,
XP, Vista

T4W.LIB T4W.DLL T4W.H

Windows CE T4CE.LIB T4CE.DLL T4W.H

Elatec GmbH

Page 8 of 36

5. Compatibility and Differences
Here is an overview of transponder types and functions, which can be used in conjunction with different
types of transponder readers:

 Reader family T4
AHL810, AHL330, AHL410, AHL170,
AHL570, AHL575, AXA050, AXA200,

AXA250, AXA500, AXA550,
TWN3 Multi125

Reader family T5
AHL821, AXA033

Transponder Types

Transponder type IDRO-A
(4102)

Supported Supported

Transponder type IDRW-B
(Hitag 1, Hitag S)

Supported
(W/O crypto)

Supported

Transponder type IDRW-C
(Hitag 2)

Supported
(W/O crypto)

Supported

Transponder type IDRW-D
(4150)

Supported (f/64) Supported (f/64)

Transponder type IDRW-E
(Q5, 5555, 5557)

Supported (Manchester f/64) Not supported

Transponder type IDRO-G
(ISO FDX-B)

Supported Supported by firmware V1.11 or later

Transponder type IDRO-H
(4026)

On request Supported (f/32)

DLL-Specific Functions

T4FindCOMPort,
T4FindCOMPortNr
T4FindFirstCOMPortNr
T4FindNextCOMPortNr

Only USB and CF card readers can be detected by these functions

Reader Requests

I/O Requests Available, but do only show an effect
for AXA050, AXA200, AXA250,

AXA500, AXA550, AHL575

Available, but do only show an effect
for AXA033

Beep Request Available, but do only show an effect, if
a beeper is connected to the

appropriate output

Not supported

Crypto Functions for Hitag 1,
Hitag 2 and Hitag S

Not supported Supported by AHL821 and AXA033
with crypto processor

Elatec GmbH

Page 9 of 36

6. Functions
This is the list of functions which are available via the API-DLL. Please note, that many functions are
handled by the DLL internally without any communication to the reader. Where applicable, the
appropriate command code and stucture of data of the serial communication is shown.

6.1 Retrieving Port Numbers

For USB and CF card readers, special functions do exists, which are able to find the connected
transponder readers without any communication. This saves time during the initialization process of an
application. Following functions are available.

 Windows
95/98/ME

Windows
2000/XP

Windows
CE/Mobile

T4FindCOMPort
1)

 Not supported Supported Supported
(CF only)

T4FindFirstCOMPortNr Not supported Supported N/A

T4FindNextCOMPortNr Not supported Supported N/A

T4FindCOMPortNr Not supported Supported Supported
(CF only)

T4GetCOMPortString Supported Supported Supported

1)
 Preferred function for single-reader applications.

LPCTSTR T4FindCOMPort(void)

This function is used for retrieving the port name of a CF-card- or USB-reader.

Parameter: None.

Return: If a transponder reader has been found, a pointer is returned which
points to the name of the COM port. If no reader has been found the
function returns a null pointer.

Attention:

Also see table “Error Codes of the Library”, especially error code T4_NOTINIT.

int T4FindFirstCOMPortNr(int PortTypes)

This function is used in conjunction with T4FindNextCOMPortNr in order to retrieve the port numbers

of all installed CF-card- and USB readers.

Parameter:

PortTypes Logical or of the definitions T4_MSK_USB and T4_MSK_CF, which

represent the types of readers (and the type of their communication
interface) to be retrieved.

Return: If a transponder reader has found, an integer value is returned which
reflects the number of the COM port. If no transponder reader has been
found the function returns zero.

Elatec GmbH

Page 10 of 36

Example:

// Find all installed USB readers
int PortNr;
int Count = 0;
PortNr = T4FindFirstCOMPortNr(T4_MSK_USB);
while (PortNr != 0)
{
 Count++;
 printf(“USB reader found at COM%d\n”,PortNr);
 PortNr = T4FindNextCOMPortNr();
}
printf(“%d USB readers have been found.\n”,Count);

int T4FindNextCOMPortNr(void)

This function is used in conjunction with T4FindFirstCOMPortNr in order to retrieve the port

numbers of all installed CF-card- and USB readers. If T4FindFirstCOMPortNr already returned none-
zero, further calls to this function do return all remaining COM ports.

Parameter: None.

Return: If a transponder reader has found, an integer value is returned which
reflects the number of the COM port. If no transponder reader has been
found the function returns zero.

int T4FindCOMPortNr(void)

This function is used for retrieving the port number of a CF-card- or USB-reader.

Parameter: None.

Return: If a transponder reader has found, an integer value is returned which
reflects the number of the COM port. If no transponder reader has been
found the function returns zero.

Attention:

Also see table “Error Codes of the Library”, especially error code T4_NOTINIT.

LPCTSTR T4GetCOMPortString(int PortNr)

This function calculates the string of a port name out of a given port number.

Parameter:

PortNr The port number (e.g. 1 for COM1:)

Return: A pointer to a null terminated string which reflects the port name of the
given port number. E.g. a given 1 will be converted into “COM1:”.

Elatec GmbH

Page 11 of 36

6.2 Initialize/Deinitialize Communication

int T4Init(LPCTSTR Port)

Initializes the given serial port for communication with the transponder reader and performs a short test
communication to the transponder reader.

Windows CE please note:

See

Parameter:

Port Points to the null terminated string (wide characters under Windows

CE!) of the desired communication port, i.e. “COM2: “

Return: Error code. See table error codes.

int T4DeInit(void)

Deinitialize the communication with the transponder reader.

Parameter: None.

Return: Always delivers T4_NOERROR.

HANDLE T4GetCurrentReader(void)

In order to communicate with more then one transponder reader at a time, it is possible to retrieve the
handle of the currently selected reader. If more then one reader should be operated within one
application, this function should be called. A new handle is created with the function T4Init. It can be

retrieved, if a preceding call to T4Init returned an error code different to T4_V24_INITFAIL.

Parameter: None.

Return: The handle, which represents the communication environment for the
currently selected transponder reader.

void T4SetCurrentReader(HANDLE Handle)

This function selects the communication environment of an already initialized transponder reader.

Parameter:

Handle The handle, which represents the communication environment for the

transponder reader to be selected.

Return: None.

Elatec GmbH

Page 12 of 36

Example:

int Error;
HANDLE hCOM1;
HANDLE hCOM2;

Error = T4Init(“COM1:”);
if (Error == T4_V24_INITFAIL)
{
 // Unable to open COM port
 return;
}
if (Error != T4_NOERROR)
{
 // Some other error
 T4DeInit();
 return;
}
hCOM1 = T4GetCurrentReader();

Error = T4Init(“COM2:”);
if (Error == T4_V24_INITFAIL)
{
 // Unable to open COM port
 return;
}
if (Error != T4_NOERROR)
{
 // Some other error
 T4DeInit();
 return;
}
hCOM2 = T4GetCurrentReader();

// Init reader at COM1
T4SetCurrentReader(hCOM1);
Error = SetTagDriver(T4_MSK_IDRO_A | T4_MSK_IDRW_D);

// Init reader at COM2
T4SetCurrentReader(hCOM1);
Error = SetTagDriver(T4_MSK_IDRO_A | T4_MSK_IDRW_D);

HANDLE T4GetHandle(void)

Retrieve the handle of the communication stream which has been opened via the Windows system call
CreateFile by the DLL.

Parameter: None.

Return: The handle for the communication stream which has been opened via
the Windows system call CreateFile by the DLL. If the

communication is not initialized INVALID_HANDLE_VALUE is returned.

Elatec GmbH

Page 13 of 36

6.3 Functions for Selecting a Transponder

These functions are performing three actions:

1. Searching for a transponder

2. Logging into the transponder if necessary

3. Retrieving the unique ID of a transponder

The length of the unique ID depends on the type of transponder:

Transponder
Type

Length of ID [Bytes] Number of bytes returned Index of
first valid

byte

IDRO-A 5 5 0

IDRW-B 4 5 1

IDRW-C 4 5 1

IDRW-D 4 5 1

IDRW-E 4
1)

 5 1

IDRO-G 8 8 0

IDRO-H 8 8 0

1)
 this is not a unique ID, but a data word configured by the user.

This can also be shown as:

Transponder
Type

 0 1 2 3 4 5 6 7

IDRO-A

IDRW-B 0x00

IDRW-C 0x00

IDRW-D 0x00

IDRW-E 0x00

IDRO-G

IDRO-H

Elatec GmbH

Page 14 of 36

6.3.1 Blocking Functions for Selecting a Transponder

These functions are performing a complete search for a transponder and are returning, after the
operation has been completed.

int T4SelectTag(BYTE *TagType,BYTE *SerialNumber)

This functions performs three tasks:

1. If a transponder is in reach of the transponder reader, the type of the transponder is determined.

2. If the transponder can be reached, it will be selected. That means it is prepared for reading and
writing. If the transponder needs a password, the transponder reader will try to log into the
transponder by using the password that is stored in the internal memory of the transponder reader
(by default this is 00 00 00 00).

3. If the selection of the transponder was successful, the serial number will be delivered.

Parameter:

TagType Delivers the type of the selected tag.

SerialNumber Points to a memory space (5-8 bytes, depending on the activated

transponders) where the serial number will be stored.

Return: Error code. See table error codes.

Serial Communication:

Request Reply

Command Data Data

0x11 None N Bytes
Byte 0 = TagType,
Byte 1..N-1 = SerialNumber
(5-8 Bytes)

Elatec GmbH

Page 15 of 36

int T4SelectTagPW(BYTE *PassWord,BYTE *TagType,

 BYTE *SerialNumber)

This functions performs three tasks:

1. If a transponder is in reach of the transponder reader, the type of the transponder is determined.

2. If the transponder can be reached, it will be selected. That means it is prepared for reading and
writing. If the transponder needs a password, the transponder reader will try to log into the
transponder by using the given password.

3. If the selection of the transponder was successful, the serial number will be delivered.

Parameter:

PassWord Pointer to the 4-byte password. If the pointer is set to NULL, the internal

password of the reader (by default this is 00 00 00 00) will be used.

TagType Delivers the type of the selected tag.

SerialNumber Points to a memory space (5-8 bytes, depending on the activated

transponders) where the serial number will be stored.

Return: Error code. See table error codes.

Serial Communication:

Request Reply

Command Data Data

0x1C 4 Bytes Password N Bytes
Byte 0 = TagType,
Byte 1..N-1 = SerialNumber
(5-8 Bytes)

int T4SelectTagType(BYTE ReqTagType,

 BYTE *TagType, BYTE *SerialNumber)

This function is valid only for tag type IDRW-C. It is required because a IDRW-C may emulate a
transponder of type IDRO-A. This function provides a functionality for selecting the IDRW-C in it’s
native mode.

Parameter:

ReqTagType This parameter must be set to T4_TYPE_IDRW_C.

TagType Delivers the type of the selected tag.

SerialNumber Points to a memory space (5-8 bytes, depending on the activated

transponders) where the serial number will be stored.

Return: Error code. See table error codes.

Serial Communication:

Request Reply

Command Data Data

0x1B 1 Byte = 0x02 N Bytes
Byte 0 = TagType,
Byte 1..N-1 = SerialNumber
(5-8 Bytes)

Elatec GmbH

Page 16 of 36

int T4Halt(void)

This function is used in multi-tag environments with IDRW-B. In order to handle more then one tag,
following typical sequence is necessary:

1. Select a transponder via one of the select functions (see above).

2. Do all necessary actions with the selected transponder, i.e. read or write operations.

3. Stop communication with this transponder by calling T4Halt. This will prevent the transponder

from participating from the further arbitration process.

4. Continue with 1. till no further transponder is found.

Parameter: None.

Return: Error code. See table error codes.

Serial Communication:

Request Reply

Command Data Data

0x1A None None

int T4RFReset(void)

This function will turn off the RF field for 50ms. This will cause any transponder in the field to restart
operation.

Parameter: None.

Return: Error code. See table error codes.

Serial Communication:

Request Reply

Command Data Data

0x69 None None

Elatec GmbH

Page 17 of 36

6.3.2 None-Blocking Functions for Selecting a Transponder

This set of functions lets a application search for transponders in the background without consuming
CPU time for a longer period.

void T4InitTagPoll(BYTE *PassWord)

This function prepares the usage of the functions T4DoTagPoll (see below).

Parameter:

PassWord Pointer to the 4-byte password. If the pointer is set to NULL, the internal

password of the reader (by default this is 00 00 00 00) will be used.

Return: None.

int T4DoTagPoll(BYTE *TagType,BYTE *SerialNumber)

This function is the none blocking version of T4SelectTag and T4SelectTagPW. Before calling this

function the function T4InitTagPoll must be called. This function is the best choice for cyclic

searching for a transponder e.g. in the timer event of a Windows program. A typical value for the
repeat time is 50 milliseconds.

Parameter:

TagType Delivers the type of the selected tag.

SerialNumber Points to a memory space (5-8 bytes, depending on the activated

transponders) where the serial number will be stored.

Return: Error code. See table error codes.

int T4DeInitTagPoll(void)

This function ends any pending poll cycle of the poll command. It is not necessary to call this function
before calls to other functions, because it is called automatically internal by the DLL if necessary.

Parameter: None.

Return: Error code. See table error codes.

Elatec GmbH

Page 18 of 36

int T4GetTagPollState(void)

This function retrievs the current state of a poll cycle.

Parameter: None.

Return: T4_POLLNOTINIT Tag poll is not initialized.

T4_POLLIDLE Currently, a tag poll is active

T4_POLLBUSY Currently, a command is executed

6.3.3 None-Blocking Functions for Auto-Answer Mode

This set of functions lets a application search for transponders in the background without consuming
CPU time for a longer period. Furthermore, these functions do require the auto-answer mode of the
transponder reader to be turned on.

int T4InitAAMPoll(void)

This function starts cyclic polling for an auto-answer packet from the reader.

Parameter: None.

Return: Error code. See table error codes.

int T4DoAAMPoll(BYTE *TagType,BYTE *SerialNumber)

This function returns the received transponder type and serial number if a transponder has been
presented to the RF field.

Parameter:

TagType Delivers the type of the selected tag.

SerialNumber Points to a memory space (5-8 bytes, depending on the activated

transponders) where the serial number will be stored.

Return: Error code. See table error codes.

int T4DeInitAAMPoll(void)

Parameter: None.

Return: Error code. See table error codes.

Elatec GmbH

Page 19 of 36

6.4 Functions for Reading and Writing of Transponders

Reading and writing from/to the transponder is always performed in multiples of blocks that consist of
four bytes.

T4WriteData(BYTE BlockAddress,BYTE BlockCount,BYTE *Data)

Writes data blocks (= 4 bytes = 32 bit) to the transponder. Before writing the transponder must be
selected.

Parameter:

BlockAddress Address of the first written block.

BlockCount Count of blocks to be written. Valid values are from 1 to 4.

Data Pointer to the written data.

Return: Error code. See table error codes.

Serial Communication:

Request Reply

Command Data Data

0x14 1 + (4 x BlockCount) Bytes,
Byte 0 = BlockAddress,
Remaining Bytes = Data
The count of blocks is determined by
the length of the telegram

 None

int T4ReadData(BYTE BlockAddress,BYTE BlockCount,BYTE *Data)

Reads data blocks (= 4 bytes = 32 bit) from the transponder. Before reading the transponder must be
selected.

Parameter:

BlockAddress Address of the first read block.

BlockCount Count of blocks to be read. Valid values are from 1 to 4.

Data Pointer to the read data.

Return: Error code. See table error codes.

Serial Communication:

Request Reply

Command Data Data

0x15 2 Bytes
Byte 0 = BlockAddress,
Byte 1 = BlockCount

 (4 x BlockCount) Bytes of Data

Elatec GmbH

Page 20 of 36

6.5 Functions for Configuring Transponders

int T4WriteConfigData(BYTE ConfigAddress,BYTE *ConfigData)

Writes a configuration block to the transponder. The transponder must be selected first.

Note:

This functions should only be called, if you have studied the corresponding datasheet of the
transponder.

Parameter:

ConfigAddress Configuration address of the transponder.

ConfigData Pointer to the new configuration data (4 bytes).

Return: Error code. See table error codes.

Serial Communication:

Request Reply

Command Data Data

0x16 5 Bytes,
Byte 0 = ConfigAddress
Byte 1..4 = ConfigData

 5 Bytes

int T4ReadConfigData(BYTE ConfigAddress,BYTE *ConfigData)

Reads a configuration block from the transponder. The transponder must be first selected.

Parameter:

ConfigAddress Configuration address of the transponder.

ConfigData Pointer to the data space where the configuration block will be stored.

Please note: five bytes are returned. The first byte contains the
transponder type and the remaining 4 bytes contain the data word itself.

Return: Error code. See table error codes.

Serial Communication:

Request Reply

Command Data Data

0x17 1 Byte = ConfigAddress 5 Bytes,
Byte 0 = TagType,
Byte 1..4 = ConfigData

Elatec GmbH

Page 21 of 36

6.6 Configuring Support for Transponders

int T4SetTagDriver(BYTE Driver)

This function configures the support for the different transponder types.

Parameter:

Driver Or combination of the desired transponder types. Please note the

T4_MSK_IDRW_E can only be used alone.

Return: Error code. See table error codes.

Example:

SetTagDriver(T4_MSK_IDRO_A | T4_MSK_IDRW_D);

Serial Communication:

Request Reply

Command Data Data

0x80 2 Bytes, Byte 0 = 0x00, Byte 1 = Driver None

int T4SetTagOptions(BYTE TagType,BYTE TagOptions)

With this function the transponder reader behavior for a given tag is configured.

Note:

Only behavior for transponder type IDRW-E can be configured.

Parameter:

TagType Transponder type

TagOptions Bit combination which defines the new behavior.

Return: Error code. See table error codes.

Serial Communication:

Request Reply

Command Data Data

0xA5 2 Bytes, Byte 0 = TagType,
Byte 1 = TagOptions

 None

6.6.1 Options for Transponder Type IDRW-B

For the transponder type IDRW-B there is one possible value for parameter TagType.

6.6.1.1 TagType = 0x01 (=T4_TYPE_IDRW_B)

The configuration is stored in the internal EEPROM of the reader and is defined as follows:

Elatec GmbH

Page 22 of 36

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

reserved reserved reserved reserved reserved reserved HF-Reset Anticol.

Bit 0:

0: Standard mode. Select an IDRW-B without arbitration. If more then one transponder is in the HF
field, the transponder with the highest signal will be selected.

1: Anti-collision mode. A transponder is selected via the arbitration function of IDRW-B.

Bit 1:

0: Standard mode, 1: Reset HF before selecting IDRW-B

This option is necessary to gain access to IDRW-B, which are running in IDRO-A emulation mode. It is
not possible to use anti-collision together with this function.

Note:

In order to use multi-tag function, also see function T4Halt.

Bit 2-7:

Reserved for future use. Please keep this bits reset to 0.

6.6.2 Options for Transponder Type IDRW-E

For the transponder type IDRW-E there are two possible values for parameter TagType.

6.6.2.1 TagType = 0x04 (=T4_TYPE_IDRW_E)

The configuration is stored in the internal EEPROM of the reader and is defined as follows:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

RepCnt3 RepCnt2 RepCnt1 RepCnt0 Conf/Dat SelAdr2 SelAdr1 SelAdr0

Bit 0-2:

Address that will be read by selecting the transponder.

Bit 3:

0: a data word is read, 1: a config word is read

Bit 4-7:

Repeat count. Therefore that IDRW-E as no serial number by default, the reader can be configured to
read a given word many times. If the word is always the same, the transponder reader will return a
successful read.

Notes:

If repeat count is set to 0, the select command will always return a successful read even if there
is no transponder in the field. The serial number will always be 00 00 00 00. This value could be
used if you are determining if a transponder is in the field in a second step by reading a
memory address of the transponder.

If repeat count is set to 1, the select command will always return a successful read even if there
is no transponder in the field. The serial number will be from noise to a good read depending
on the distance of the transponder. So this value should not be used.

So a good choice for RepeatCount is 3 or above to get more safety in detecting a transponder.

Elatec GmbH

Page 23 of 36

6.6.2.2 TagType = 0x84 (=T4_TYPE_IDRW_E | 0x80)

For safety reasons this configuration byte is stored only in the internal RAM of the reader and will be
reset to its default value at next startup of the reader:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Res. res. res. res. res. res. Lock Use PW

Bit 0:

0: password mode off, 1: password mode on.

Bit 1:

0: written data won’t be locked, 1: written data will be locked

6.6.3 Configuring Reader Internal Password

int T4ChangeReaderPW(BYTE *OldPW,BYTE *NewPW)

With this function the reader internal password can be changed. By default, the internal password of
the reader is 0x00 0x00 0x00 0x00. This password is used for selecting tags of type IDRW-C, IDRW-D
and IDRW-E.

Parameter:

OldPW Pointer to four bytes of data, which contain the old password.

NewPW Pointer to four bytes of data, which contain the new password.

Return: Error code. See table error codes.

Serial Communication:

Changing the reader internal password is a two-step process. First, the reader has to prepared for the
password change with the old/current password.

Request Reply

Command Data Data

0xA3 4 Bytes, Old/Current Password None

In the second step the new password has to be transferred:

Request Reply

Command Data Data

0xA4 4 Bytes, New Password None

Elatec GmbH

Page 24 of 36

6.7 Cryptographic Functions

Versions of the reader family T5 do contain an additional crypto processor, which enable the support
for the Hitag specific authentication and crypto-functions.

6.7.1 Setting up Crypto Keys

Note:

Please keep track of the crypto keys that have been configured. In
order to change a crypto key, both the current configured, and the
new key must be specified!

int T4Personalisation12(const BYTE *Data)

This function is used to write the keys and passwords for Hitag 1 and Hitag 2 into the built-in crypto
processor of an appropriate transponder reader.

Note:

There is no way to reset the personalization information!

Parameter:

Data Points to an array of 72 bytes which do contain both the old and the new

personalization information. See below.

Return: If the function succeeds, the return code is T4_NOERROR. If the old

information has been wrong, the return code is T4_READERCHPWFAIL.

Serial Communication:

Request Reply

Command Data Data

0xA6 72 Bytes of Data None

Elatec GmbH

Page 25 of 36

Here is an example of a structure of the personalization information for Hitag 1 and Hitag 2. It sets the
crypto processor from the initial state to factory default personalization information of Hitag 1 / Hitag 2.
This is also the default delivery status of the transponder reader.

const BYTE PersData[72] =
{
 // Old Key A New Key A
 0xFF,0xFF,0xFF,0xFF, 0x00,0x00,0x00,0x00,
 // Old Key B New Key B
 0xFF,0xFF,0xFF,0xFF, 0x00,0x00,0x00,0x00,
 // Old Logdata 0A New Logdata 0A
 0xFF,0xFF,0xFF,0xFF, 0x00,0x00,0x00,0x00,
 // Old Logdata 0B New Logdata 0B
 0xFF,0xFF,0xFF,0xFF, 0x00,0x00,0x00,0x00,
 // Old Logdata 1A New Logdata 1A
 0xFF,0xFF,0xFF,0xFF, 0x00,0x00,0x00,0x00,
 // Old Logdata 1B New Logdata 1B
 0xFF,0xFF,0xFF,0xFF, 0x00,0x00,0x00,0x00,
 // Old Hitag 2 Key 16 New Hitag 2 Key 16
 0xFF,0xFF,0xFF,0xFF, 0x00,0x00,0x4F,0x4E,
 // Old Hitag 2 Key 32 New Hitag 2 Key 32
 0xFF,0xFF,0xFF,0xFF, 0x4D,0x49,0x4B,0x52,
 // Old Hitag 2 Password New Hitag 2 Password
 0xFF,0xFF,0xFF,0xFF, 0x00,0xAA,0x48,0x54
};

int T4PersonalisationS(const BYTE *Data)

This function is used to write the Keys and Passwords for Hitag S into the built-in crypto processor of
the transponder reader. The default personalization information is entire 0xFF.

Note:

There is no way to reset the personalization information!

Parameter:

Data Points to an array of 24 bytes which do contain both the old and the new

personalization information. See below.

Return: If the function succeeds, the return code is T4_NOERROR. If the old

information has been wrong, the return code is T4_READERCHPWFAIL.

Serial Communication:

Request Reply

Command Data Data

0xA7 24 Bytes of Data None

Here is an example of a structure of the personalization information for Hitag S. This is also the default
delivery status of the transponder reader.

const BYTE PersData[24] =
{
 // Old Key 16 New Key 16
 0xFF,0xFF,0xFF,0xFF, 0x00,0x00,0x4F,0x4E,
 // Old Key 32 New Key 32
 0xFF,0xFF,0xFF,0xFF, 0x4D,0x49,0x4B,0x52,
 // Old Password New Password
 0xFF,0xFF,0xFF,0xFF, 0x00,0xAA,0x48,0x54
};

Elatec GmbH

Page 26 of 36

6.7.2 Configuring Crypto Functions for Hitag 1 and Hitag S

Due to the fact that Hitag 1 and Hitag S are very similar in the selection process, they are treated both
as IDRW-B in the T4 API. During the selection of Hitag 1 or Hitag S the transponder reader is
distinguishing between the two types by analyzing the serial number of the transponder. In the further
process the appropriate crypto sequence for the specific transponder is used. Following behavior can
be configured:

Hitag 1: Definition

 Do not use authentication HTG1_AUTH_NONE

 Authentication with KEY A HTG1_AUTH_KEYA

 Authentication with KEY B HTG1_AUTH_KEYB

Hitag S: Definition

 Do not use authentication HTGS_AUTH_NONE

 Authentication without password HTGS_AUTH_STD

 Authentication with password HTGS_AUTH_PW

 Automatic selection with or without authentication HTGS_AUTH_NONESTD

 Automatic selection with or without authentication HTGS_AUTH_NONEPW

 and password

The behavior for both transponders is configured with a single function call. Example:

Let the transponder reader select a Hitag 1 via KEY A and Hitag S without authentication:

Error = T4SetTagOptions(0x80 | T4_TYPE_IDRW_B,
 HTG1_AUTH_KEYA | HTGS_AUTH_NONE);

The 0x80 tells the reader that we are configuring temporary options which are not stored in the internal
EEPROM. T4_TYPE_IDRW_B selects the options for Hitag 1 and Hitag S.

6.7.3 Configuring Crypto Functions for Hitag 2

For Hitag 2 the options for the cryptographic functions are as follows:

Hitag 2: Definition

 Do not use crypto mode HTG2_AUTH_PW

 Crypto mode without password check HTG2_AUTH_CRYPT

 Crypto mode with password check HTG2_AUTH_CRYPT_PW

Example:

Let the transponder reader select Hitag 2 in crypto mode with password check:

Error = T4SetTagOptions(0x80 | T4_TYPE_IDRW_C,
 HTG2_AUTH_CRYPT_PW);

Elatec GmbH

Page 27 of 36

6.8 Configuring Auto-Answer Mode

int T4AAMSetConfig(BYTE AAMMode)

Configure the behaviour of the auto-answer mode. If a tag is detected and reported, the search ceases
for the repeat period time. Every autoanswer reply has the reply format of the 0x11 request. Replies
are only sent, if a transponder have been detected.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Enable Trigger Edge/
Level

res. res. IO
Select 2

IO
Select 1

IO
Select 0

Bit 0-2:

Input selection for trigger

000: line IO1

001: line IO2

010: line IO3

011: line IO4

100: line IO5

other values are invalid

Bit 5:

0: Auto-answer is active whenever the logic state of the selected input is true (high,’1’) and read serial
number operations are then tried until a tag is detected.

1: Auto-answer is triggered by a rising edge of the logic level of the selected input line and one single
tag read serial number operation is tried.

Bit 6:

0: Auto-answer mode is permanently activated

1: Auto-answer mode is triggered by external events

Bit 7:

If ’1’, autoanswer mode is enabled, else auto-answer mode is disabled

Parameter:

AAMMode Configuration byte as specified above.

Return: Error code. See table error codes.

Serial Communication:

Request Reply

Command Data Data

0xAC 1 Byte, AAMMode None

Elatec GmbH

Page 28 of 36

int LIBFUNC T4AAMSetRepeatTime(WORD RepeatTime)

Configure the repeat time of the auto-answer mode.

Parameter:

RepeatTime Repeat time which is specified in multiples of 5 milliseconds.

Return: Error code. See table error codes.

Serial Communication:

Request Reply

Command Data Data

0xAD 2 Bytes, Byte 0 = RepeatTime MSB,
Byte 1 = RepeatTime LSB

 None

6.9 Configuring Digital I/Os

int T4IOSetConfig(BYTE IODirection,BYTE IOLevel)

The data direction for the I/O lines of the reader is freely programmable. A ’1’ bit on the corresponding
position of IODirection makes that signal line an output. A ’0’ bit makes that line an input. The
correspondence is given in the following table:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

res. res. res. IO5 IO4 IO3 IO2 IO1

The physical level of each I/O can be programmed to be the negated logical value if the corresponding
bit in IOLevel is set. Both inputs and outputs are affected by this setting.

Parameter:

IODirection A byte which contains the input/output configuration for the signal lines.

A ‘1’ makes the line an output, a ‘0’ makes the line an input.

IOLevel A byte which contains the logic polarity of the signal lines. A ‘1’ makes

the I/O visible as a active low port, a ‘0’ will make it an active high port.

Return: Error code. See table error codes.

Serial Communication:

Request Reply

Command Data Data

0xA8 2 Bytes, Byte 0 = IODirection, Byte 1 =
IOLevel

 None

Elatec GmbH

Page 29 of 36

int T4IOSetDefaults(BYTE IODefaultValue)

IODefaultValue specifies the logical value of the output lines after a reset.

Parameter:

IODefaultValue A byte which contains the logical value of the outputs after a reset.

Return: Error code. See table error codes.

Serial Communication:

Request Reply

Command Data Data

0xA9 1 Byte, IODefaultValue None

6.10 I/O Requests

int T4IOReadInputs(BYTE *InputState)

This request reads the status of the digital inputs. The logical state of the ports is reported, that is, the
physical state of the inputs is XORed with the given I/O level

InputState Pointer to a byte which contains the state of inputs after calling the

function.

Return: Error code. See table error codes.

Serial Communication:

Request Reply

Command Data Data

0xB0 None 1 Byte = InputState

Elatec GmbH

Page 30 of 36

int T4IOSetOutputs(BYTE SetBits)

This request forces a logic ‘1’ state to the outputs corresponding to the ’1’ bits in SetBits. The outputs
corresponding to ’0’ bits in SetBits remain unchanged.

Parameter:

SetBits A byte which contains the bits of the output ports being set (= set to

active state).

Return: Error code. See table error codes.

Serial Communication:

Request Reply

Command Data Data

0xB1 1 Byte = SetBits None

T4IOClearOutputs(BYTE ClearBits)

This request forces a logic ‘0’ state to the outputs corresponding to the ’1’ bits in ClearBits. The outputs
corresponding to ’0’ bits in ClearBits remain unchanged.

Parameter:

ClearBits A byte which contains the bits of the output ports being cleared (= set to

inactive state).

Return: Error code. See table error codes.

Serial Communication:

Request Reply

Command Data Data

0xB2 1 Byte = ClearBits None

Elatec GmbH

Page 31 of 36

int T4IOBeep(BYTE BeepBits,BYTE Duration,BYTE Frequency)

This request causes the signal on the outputs corresponding to the ’1’ bits in beep-bits to toggle with
the specified frequency for the specified duration. The duration is given in 20 milliseconds increments.
The frequency is given in approx. 30 Hz increments. The reply is sent only after request completion.
Then the toggled outputs assume their previous state.

Parameter:

BeepBits A byte which contains the output ports which will sound a beep.

Duration The duration of the beep in multiples of 20 milliseconds.

Frequency The frequency of the beep in approx. 30 Hz increments.

Return: Error code. See table error codes.

Serial Communication:

Request Reply

Command Data Data

0xB3 3 Bytes:
Byte 0 = BeepBits,
Byte 1 = Duration
Byte 2 = Frequency

 None

Elatec GmbH

Page 32 of 36

6.11 Reading Version Information

int T4VersionTagReader(BYTE *Version)

Delivers the version of the connected transponder reader.

Parameter:

Version Points to a data space of five bytes which do contain the version

information:

Byte 1: Major number of the version

Byte 2: Minor number of the version

Byte 3: reserved

Byte 4: Device type (T4 = 0x81, T5 = 0x87)

Byte 5: Or combination of supported transponders

Return: Error code. See table error codes.

Serial Communication:

Request Reply

Command Data Data

0x65 None 5 Bytes

int T4VersionLibrary(void)

Delivers the version of the linked library.

Parameter: None.

Return: Integer which contains the version number, i.e. 102 for version 1.02.

Elatec GmbH

Page 33 of 36

6.12 Miscellaneous

int T4ConfigurationReset(void)

Resets the configuration of the transponder reader to the original factory settings.

Parameter: None.

Return: Error code. See table error codes.

Serial Communication:

Request Reply

Command Data Data

0x64 None None

int T4CPUReset(void)

This function will reset the CPU of the transponder reader like a power-up.

Parameter: None.

Return: Error code. See table error codes.

Serial Communication:

Request Reply

Command Data Data

0x63 None None

const char *T4GetStatusString(int Status)

Returns a clear text version of the given status code.

Parameter:

Status Status code to convert

Return: Pointer to the clear text status string.

Elatec GmbH

Page 34 of 36

7. Definitions

7.1 General

7.1.1 Version of the Library

T4_VERSIONLIBRARY Version of the header file this version should match the version of the

linked library.

7.1.2 Type of Transponders

The following definitions correspond to the returned transponder types of the select commands:

T4_TYPE_IDRO_A Read-Only-Tag IDRO-A.

T4_TYPE_IDRW_B Read-Write-Tag IDRW-B.

T4_TYPE_IDRW_C Read-Write-Tag IDRW-C.

T4_TYPE_IDRW_D Read-Write-Tag IDRW-D.

T4_TYPE_IDRW_E Read-Write-Tag IDRW-E.

T4_TYPE_IDRO_G Read-Only-Tag IDRO-G.

T4_TYPE_IDRO_H Read-Only-Tag IDRO-H.

7.1.3 Codes to Support the Different Transponder Types

The following definitions are used in combination with the function T4SetTagDriver:

T4_MSK_IDRO_A Read-Only-Tag IDRO-A.

T4_MSK_IDRW_B Read-Write-Tag IDRW-B.

T4_MSK_IDRW_C Read-Write-Tag IDRW-C.

T4_MSK_IDRW_D Read-Write-Tag IDRW-D.

T4_MSK_IDRW_E Read-Write-Tag IDRW-E.

T4_MSK_IDRO_G Read-Only-Tag IDRO-G.

T4_MSK_IDRO_H Read-Only-Tag IDRO-H.

7.1.4 Port Types

The following definitions are used in combination with the function T4FindFirstCOMPortNr:

T4_MSK_USB Find USB readers.

T4_MSK_CF Find CF card readers.

Elatec GmbH

Page 35 of 36

7.2 Error Codes

The following error codes are returned by functions of T4xx.LIB:

7.2.1 General

T4_NOERROR The function has been executed successful.

7.2.2 Error Codes from Transponder Operations

T4_NOTAG There is no transponder in the reading range of the transponder reader.

T4_DATAERROR Erroneous data. Maybe the distance between reader and transponder is

to large or the communication has been disturbed in another way.

T4_WRITEERROR Error during write to a transponder. Maybe the transponder is write-

protected.

T4_ADRESSERROR The specified address is out of the valid range.

T4_WRONGTAG It has been tried to start a operation that is not supported by the

transponder.

T4_READERROR Error during a read operation of the transponder.

T4_NOTSELECTED There was read or write access without a preceding select of the

transponder.

T4_WRONGTAGPW Transponder reader failed to login to the transponder. The password is

wrong.

7.2.3 Error Codes from Reader Operations

T4_PARAERRWRITE Configuration parameters could not be saved into EEPROM.

T4_PARANOTVALID Configuration parameter is invalid.

T4_PARAERRPWCYCLE During change of internal reader password an error occurred.

T4_PARANOLOGIN It has been tried to execute a reader command that needs a login to the

reader.

T4_PARAWRONGPW It has been tried to execute a reader command that needs a login to the

reader but the password was wrong.

T4_READERCHPWFAIL Reader password could not be changed.

7.2.4 Error Codes from the Serial Connection

T4_RX_TIMEOUT During receiving of a telegram a timeout occurred.

T4_RX_WRONGANSWER During receiving of a telegram there was received a wrong character.

T4_RX_WRONGCSUM The checksum of a received telegram was wrong.

T4_RX_PARITY A parity error occurred.

T4_RX_OVERRUN An overrun error occurred.

T4_RX_FRAME A frame error occurred.

Elatec GmbH

Page 36 of 36

7.2.5 Error Codes of the Library

T4_RX_WRONGLENGTH The length of a telegram was wrong.

T4_WRONGBLOCKCNT The count of blocks within a telegram was too small or too big.

T4_POLLNOTINIT Try to start the function T4DoTagPoll without a preceding call to

T4InitTagPoll.

T4_ALREADYINIT Another call to T4Init, but the library was already initialized.

T4_NOTINIT A function call to the library occurred but the library was not (or no more)

initialized.
Please note:
This error code will also be returned if a CF card reader or USB
reader is removed while the DLL is initialized.

T4_V24_INITFAIL The initialization of the library via T4Init failed. The given COM port

was not available.

